Tuesday, February 17, 2015

Configuring Cloudera Search to use local directory indexes

If you are using Cloudera Search, the SOLR collections that are created using Solrctl commands create collections that are backed in HDFS (org.apache.solr.core.HdfsDirectoryFactory) by default. If you want certain collections to use local indexes instead, then you can do the following:

1. Log in to one of the SOLR nodes and generate a new instance directory locally using the solrctl command:


solrctl instancedir —generate collectionConfigDir

The above command will generate the folder 'collectionConfigDir' with default configuration
2. Open the solrconfig.xml in the editor and make the following changes:

  • Comment out the section related to <directoryFactory> - The default generated config uses the HDFSDirectoryFactory. We can add a new section for the directoryFactory to use solr.NRTCachingDirectoryFactory


<directoryFactory name="DirectoryFactory" class="solr.NRTCachingDirectoryFactory">
</directoryFactory>

<!--  <directoryFactory name="DirectoryFactory" class="org.apache.solr.core.HdfsDirectoryFactory">
    <str name="solr.hdfs.home">${solr.hdfs.home:}</str>
    <str name="solr.hdfs.confdir">${solr.hdfs.confdir:}</str>
    <str name="solr.hdfs.security.kerberos.enabled">${solr.hdfs.security.kerberos.enabled:false}</str>
    <str name="solr.hdfs.security.kerberos.keytabfile">${solr.hdfs.security.kerberos.keytabfile:}</str>
    <str name="solr.hdfs.security.kerberos.principal">${solr.hdfs.security.kerberos.principal:}</str>
    <bool name="solr.hdfs.blockcache.enabled">${solr.hdfs.blockcache.enabled:true}</bool>
    <int name="solr.hdfs.blockcache.slab.count">${solr.hdfs.blockcache.slab.count:1}</int>
    <bool name="solr.hdfs.blockcache.direct.memory.allocation">${solr.hdfs.blockcache.direct.memory.allocation:true}</bool>
    <bool name="solr.hdfs.blockcache.direct.memory.allocation">false</bool>
    <int name="solr.hdfs.blockcache.blocksperbank">${solr.hdfs.blockcache.blocksperbank:16384}</int> 
    <bool name="solr.hdfs.blockcache.read.enabled">${solr.hdfs.blockcache.read.enabled:true}</bool>
    <bool name="solr.hdfs.blockcache.write.enabled">${solr.hdfs.blockcache.write.enabled:true}</bool>
    <bool name="solr.hdfs.nrtcachingdirectory.enable">${solr.hdfs.nrtcachingdirectory.enable:true}</bool>
    <int name="solr.hdfs.nrtcachingdirectory.maxmergesizemb">${solr.hdfs.nrtcachingdirectory.maxmergesizemb:16}</int>
    <int name="solr.hdfs.nrtcachingdirectory.maxcachedmb">${solr.hdfs.nrtcachingdirectory.maxcachedmb:192}</int>
  </directoryFactory> 
-->
  • Specify the solr data directory to use a local directory on the server. Also, ensure that the folder exists with required write permissions for the user running solr.

<!-- <dataDir>${solr.data.dir:}</dataDir>-->
<dataDir>/solr</dataDir>

  •  Change the lock type to use 'simple' instead of 'hdfs', which is set using this property 'solr.lock.type'

      <!--<lockType>${solr.lock.type:hdfs}</lockType>-->
 <lockType>simple</lockType>
3. Once these changes are done, then the instance directory can be uploaded as a new configuration to zookeeper using the following command

solrctrl instancedir --create collectionConfig collectionConfigDir

4. Now, the new collection can be created which will start using the local directory for storing the indexes.

solrctl collection --create newCollection -c collectionConfig -s 1 -r 2

The above command will create a collection (with 1 shard and 2 replicas) that will use local directory (/solr) for storing the indexes

Sunday, February 15, 2015

Near Line Search Indexing using Hbase, Lily Indexer and Cloudera Search (SOLR)

In this blog post, I will be explaining how to implement near "Large Scale Near Line Search Indexing" using HBase and SOLR. This is a common scenario that is applicable in different use cases where you have large volumes (and on-going) of content updates that needs to be pushed in to live search indexes and the content should be instantly (near real-time) searchable. In addition, the content that needs to be stored and indexed might be unstructured or could be large enough that existing RDBMS solutions would not scale. 

In such a situation, the master content could reside in a distributed key value columnar NOSQL store like HBase which provides horizontal scalability. For example, let's say that you have a high throughput website which gets a lot of new user generated content that you want to make it searchable. In these cases, you need a store that can support massive scale and also allows for flexible schema evolution. HBase lends itself well for these kind of usecases as it offers a distributed solution with extreme scalability and high reliability.

In this implementation, we will use Lily HBase Indexer to transform incoming HBase mutations to SOLR documents and update live SOLR indexes.

About Lily HBase Indexer


The Lily HBase Indexer Service is a fault tolerant system for processing a continuous stream of HBase cell updates into live search indexes. It works by acting as an HBase replication sink. As updates are written to HBase region servers, it is written to the Hlog (WAL) and HBase replication continuously polls the HLog files to get the latest changes and they are "replicated" asynchronously to the HBase Indexer processes. The indexer analyzes then incoming HBase cell updates, and it creates Solr documents and pushes them to SolrCloud servers.

Lily Hbase Indexer

The configuration information about indexers is stored in ZooKeeper. So, new indexer hosts can always be added to a cluster and it enables horizontal scalability

Installing and Configuring Lily Hbase Indexer

Installing the lily Hbase indexer in your cluster is very easy. If you are using a distribution like Cloudera (CDH), the Lily Hbase indexer is already included in the CDH parcels. If not, then the package can be downloaded, built and installed from Lily Hbase Indexer website. Please check here for installation steps if you want to do it manually.

Configuring Hbase Indexer

The Lily hbase indexer services provides a command line utility that can be used to add, list,  update and delete indexer configurations. The command shown below registers and adds a indexer configuration to the Hbase Indexer. This is done by passing an index configuration XML file alsong with the zookeeper ensemble information used for Hbase and SOLR and the solr collection. 

Hbase-indexer add-indexer
--name search_indexer
--indexer-conf /.search-indexer.xml
--connection-param solr.zk=ZK_HOST/solr
--connection-param solr.collection=search_meta
--zookeeper ZK_HOST:2181

The XML configuration file provides the option to specify the Hbase table which needs to be replicated and a mapper. Here we use morphline framework again to transform the columns in the hbase table to SOLR fields and we pass the morphline file which has the pipeline of commands to do the transformation

<indexer table=“search_meta” mapper="com.ngdata.hbaseindexer.morphline.MorphlineResultToSolrMapper" mapping-type="row" unique-key-field="id" row-field="keyword">
<param name="morphlineFile" value="morphlines.conf"/>
</indexer>

The Param name=”morphlineFile” specifies the location of the Morphlines configuration file. The location could be an absolute path of your Morphlines file, 

Enabling HBase Replication

Since the HBase Indexer works by acting as a Replication Sink, we need to make sure that Replication is enabled in HBase. You can activate replication using Cloudera Manager by clicking HBase Service->Configuration->Backup and ensuring “Enable HBase Replication” and “Enable Indexing” are both checked.

In addition, we have to make sure that the column family in the HBase table that needs to be replicated must have replication enabled. This can be done by ensuring that the REPLICATION_SCOPE flag is set while the column family is created, as shown below:

create ‘searchTbl’, {NAME => ‘meta’, REPLICATION_SCOPE => 1}


About Morphlines

Morphline provides a simple ETL framework for Hadoop applications. A morphline is a configuration file that makes it easy to define a transformation chain that consumes any kind of data from any kind of data source, processes the data and loads the results into a Hadoop component. Morphlines can be seen as an evolution of Unix pipelines where the data model works with streams of generic records defined by transformation commands based on a config file. Since Morphlines is a java library, it can also be embedded in any Java codebase. Here, we use it to transform the HBase cell updates and map them to fields in SOLR.

Using Morphines in HBase Indexer

I’m just showing here a very basic morphline file where the first command is extractHbaseCells which is a morphline command that extracts cells from an HBase Result and transforms the values into a SolrInputDocument. The command consists of an array of zero or more mapping specifications.. We can list an array of such mappings here. The parameters for the mapping are:
  • inputColumn – which specifies columns to which to subscribe
  • outputFied – the name of the field where the data is sent
  • type – the type of the field
  • source –  value specifies that the cell value should be indexed
The second command is to sanitizeunknown fields from being written to SOLR . The mapper that we used MorphlineResultToSolrMapper has the implementation to write the morphline fields into SOLR documents


Morphline in Hbase Indexer

Morphline support for Avro

Morphline comes with some handy utilities for reading and writing Avro formatted objects. This can be combined with the extractHbaseCells command to transform a kite avro formatted dataset persisted in Hbase as byte arrays. The readAvroContainer command Parses an Apache Avro binary container and emits a morphline record for each contained Avro datum.

The Avro schema that was used to write the Avro data is retrieved from the Avro container.  The byte array is read from the first attachment of the input record. We can then use the extractAvroPaths command to extract specific values from an Avro object as shown in the example below:


Morphline Avro Hbase Indexer

The above snippet shows how you can transform avro formatted data written in HBase and map them to SOLR fields.

Setting up SOLR schema

In order to send the HBase mutations to fields in SOLR documents, we have to make sure the following setup is done:
  • Setup the collection in SolrCloud or Cloudera Search
  • Setup the field names in schema.xml


You can check this link to read on understanding how solr documents are modeled.

Once the solr collections are created, the Hbase indexer process can be started and you can see the Hbase mutations replicated and live solr indexes get updated (in near real time).

Friday, February 13, 2015

Implementing Real Time Trending Engine on Clickstream data using Flume and Spark Streaming


In this blog post, I will be explaining one of the approaches for implementing a scalable real time stream processing engine that can provides trend aggregations using clickstream data. This could address use cases where you need the ability to provide real time trends on user activity on a website or mobile app. An engine like this would allow us to compute trend aggregations for scenarios like top products being added to cart or top searches or category pages that were visited. 

A stream processing pipeline and engine should be able to compute aggregations based on a configurable sliding window of data so that trends can be recomputed at set intervals based on sliding window of time (with low latency). I'm going to explain an approach for implementing a trend engine that works on consuming clickstream events using technologies like Apache Flume, Kite Morphlines, Spark Streaming, Rabbitmq, Node.js and Socket.IO. Below is a diagram that shows a high level architecture of the different components of the stack.


STREAM PROCESSING PIPELINE


In this approach, we will use Apache Flume for ingesting the clickstream data from the web clients. The client transmits the events into an Avro Source. The source that is receiving the event passes the event through the source interceptors where the event is transformed into a clickstream avro record using the kite Morphlines ETL framework. You can read my other blog post that talks in detail about how to ingest clickstream data using Flume and process it using Kite Morphines

Once the flume agent has been configured to ingest the clickstream events and processed using Morphines to create avro records that corresponds to a Kite Dataset, the event is fanned out to two different channels. Each channel is connected to a sink which drains the events from their respective channel. In this case, one sink is the HDFS sink which writes the avro records into HDFS as kite dataset that is used for clickstream analytics, while the other channel is configured to connect to a Spark Sink which is a custom flume sink where events get buffered for consumption by the Spark engine. 

Spark Streaming which is an extension of the Spark Core API for large scale stream processing from live datastreams. In this approach, Spark streaming uses a reliable Flume receiver to pull data from the sink and the trend aggregates are computed as a series of small batch programs. The computed trend summaries are then written to a Rabbitmq exchange. Then, a node aggregation process that subscribes to messages from the queue and creates a trend object in JSON. This trend object is then broadcasted to all clients via socket.io. Socket.io is a library that enables real-time bidirectional event based communication via websockets. This way the UI module on the websites get automatically updated with new trend information as they happen without requiring a page refresh or a periodic poll to the server. 

Now, let’s look at the key components in this stack in more detail.In this real-time trending platform, I'm using Apache Spark for building the stream processing engine. 


Apache Spark

Spark is a fast and general purpose cluster computing engine that leverages distributed memory. It has well defined and clean APIs available in multiple languages which can be used to write programs in terms of transformations on distributed datasets. It uses a data abstraction called RDDs which stand for resilient distributed datasets which is a collection of objects spread across a cluster stored in memory. RDDs are built through parallel transformations and can be automatically rebuilt on failure and thus provides linear scalability and fault tolerance. It also seamlessly integrates with the rest of the hadoop ecosystem both in terms of data compatibility and deployments Spark supports different deployment models – it can run on YARN, MESOS or a standalone mode. Plus, it comes with great libraries for machine learning, streaming processing, SQL engine and graph computations.
Apache Spark Architecture

Spark Streaming

Spark Streaming is an extension of the core Spark API that enables scalable, fault-tolerant stream processing of live data streams. Data can be ingested from many sources like Flume, Kafka or TCP sockets and can be processed using different kinds of algorithms . Finally, processed data can be pushed out to HDFS or databases. You can also use algorithms from other libraries included in  Spark (like MLlib).
Spark Streaming Dstream
Internally, Spark Streaming receives live input data streams and divides the data into batches, which are then processed by the Spark engine to generate the final stream of results in batches. Spark Streaming provides a high-level abstraction called  DStream, which represents a continuous stream of data. and internally they are represented as a sequence of RDDs.


Spark Sink

In order send the clickstream events to Spark Streaming, we use a custom spark sink. This spark sink uses a pull based approach – where event in the sink gets buffered. Spark streaming uses a reliable flume receiver to pull data from the sink using transactions. The transactions succeed only after the data is received and replicated by spark streaming. This ensures strong reliability and guarantees fault tolerance. In order to configure this custom sink, the custom sink needs to be downloaded and be available on the Flume agent’s classpath. Then in the flume configuration, we specfiy the type to be Sparksink.

The maven artifact details on the Sink is provided here:

Flume Agent Configuration

The Flume Agent has to be configured to listen to the avro source where the clickstream events are emitted and it has be configured to deliver the events to the two sinks via different channels. In addition, the source interceptors (Morphlines in this case) have to be attached to the avroSource.A sample flume agent configuration file is provided below:


clickstreamAgent.channels = mem-channel-hdfs mem-channel-avro
clickstreamAgent.sources = avroSource
clickstreamAgent.sinks = clickstream-dataset clickstream-avro-tier

clickstreamAgent.channels.mem-channel-avro.type = memory
clickstreamAgent.channels.mem-channel-avro.capacity = 10000
clickstreamAgent.channels.mem-channel-avro.transactionCapacity = 10000

clickstreamAgent.channels.mem-channel-hdfs.type = memory
clickstreamAgent.channels.mem-channel-hdfs.capacity = 10000
clickstreamAgent.channels.mem-channel-hdfs.transactionCapacity = 10000

clickstreamAgent.sources.avroSource.type = avro
clickstreamAgent.sources.avroSource.channels = mem-channel-hdfs mem-channel-avro
clickstreamAgent.sources.avroSource.bind = $HOST_NAME
clickstreamAgent.sources.avroSource.port = $PORT_NUMBER
clickstreamAgent.sources.avroSource.interceptors = attach-schema morphline

# add the schema for our record sink
clickstreamAgent.sources.avroSource.interceptors.attach-schema.type = static
clickstreamAgent.sources.avroSource.interceptors.attach-schema.key = flume.avro.schema.url
clickstreamAgent.sources.avroSource.interceptors.attach-schema.value = file:/etc/flume-ng/schemas/clickstream.avsc

# morphline interceptor config
clickstreamAgent.sources.avroSource.interceptors.morphline.type = org.apache.flume.sink.solr.morphline.MorphlineInterceptor$Builder
clickstreamAgent.sources.avroSource.interceptors.morphline.morphlineFile = /etc/flume-ng/conf/morphline.conf
clickstreamAgent.sources.avroSource.interceptors.morphline.morphlineId = convertClickStreamLogsToAvro

# store the clickstream in the avro Dataset
clickstreamAgent.sinks.clickstream-dataset.type = hdfs
clickstreamAgent.sinks.clickstream-dataset.channel = mem-channel-hdfs
# the partitioned directories must match the dataset's partition strategy
clickstreamAgent.sinks.clickstream-dataset.hdfs.path = /data/clickstream/year=%Y/month=%m/day=%d/hour=%H
clickstreamAgent.sinks.clickstream-dataset.hdfs.batchSize = 10000
clickstreamAgent.sinks.clickstream-dataset.hdfs.fileType = DataStream
clickstreamAgent.sinks.clickstream-dataset.hdfs.useLocalTimeStamp=true
clickstreamAgent.sinks.clickstream-dataset.serializer = org.apache.flume.sink.hdfs.AvroEventSerializer$Builder

# store the clickstream in the avro sink for the tiered collection 
clickstreamAgent.sinks.clickstream-avro-tier.type = org.apache.spark.streaming.flume.sink.SparkSink
clickstreamAgent.sinks.clickstream-avro-tier.channel = mem-channel-avro
clickstreamAgent.sinks.clickstream-avro-tier.hostname = $SINK_HOST
clickstreamAgent.sinks.clickstream-avro-tier.port = $SINK_PORT
clickstreamAgent.sinks.clickstream-avro-tier.batch-size = 1


Polling Flume Receiver

As I had mentioned earlier, Spark Streaming provides a polling receiver to extract events from Spark Sink. The below code shows how to create a DStream object which contains continuous stream of events from Flume


 // Create the context and set the batch size
 val sparkConf = new SparkConf().setAppName("TrendAnalyzer")
 // Create the Spark StreamingContext for the configured batch interval
 val ssc = new StreamingContext(sparkConf, batchInterval)
  
 // Create a data stream using the polling receiver
 val stream = FlumeUtils.createPollingStream(ssc, host, port)
 val windowStream = stream.window(windowInterval)

Running Spark on YARN

Spark supports pluggable cluster management and can run as either standalone or on YARN or mesos. Running Spark on YARN has several advantages if you already have a Hadoop cluster. One of the main reason is to leverage the same hadoop cluster hardware This leads to better utilization of the cluster and also eliminate the cost of maintaining a separate cluster. Also, we can take advantage of the features of the YARN scheduler for categorizing, isolating and prioritizing workloads. Spark on YARN cluster

Spark can be run in YARN under two modes – a cluster mode and a client mode. The cluster mode is suitable for production deployments where the Spark driver runs inside an application master process which is managed by YARN on the cluster, so that the client can go away after initiating the application. In yarn-client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN. This is useful when you need the spark shell interactivity or for debugging purposes.

A word on Data Serialization

Because of the in-memory nature of most Spark computations, Data Serialization plays an important role in the performance of the application. Spark by default has “Java Serialization” which is very flexible and works with most classes but it is also very slow. Spark also supports Kryo Serialization which uses Kyro library which is very compact and faster than Java Serialization. You can switch to using Kryo by initializing your job with a SparkConf and calling conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"). This setting configures the serializer used during both shuffling and also when serializing RDDs to disk. Another requirement for Kyro serializer is to register the class in advance for best performance.The scala snippet here shows how to register the avro classes. This will register the use of Avro's specific binary serialization for the Clickstream class